Introducing mozilla/Assertions.h to mfbt

Recently I landed changes to the Mozilla Framework Based on Templates (mfbt) implementing Assertions.h, the new canonical assertions implementation in C/C++ Mozilla code.

Runtime assertions

Using assertions, a developer can efficiently detect when his code goes awry because internal invariants were broken. Mozilla has many assertion facilities. NS_ASSERTION is the oldest, but unfortunately it can be ignored, and therefore historically has been. We later introduced NS_ABORT_IF_FALSE as as an actual assertion that fails hard, and it’s now widely used. But it’s quite unwieldy, and it can’t be used by code that doesn’t want to depend on XPCOM. (Who would?)

mfbt addresses latent concerns with existing runtime assertions by introducing MOZ_ASSERT, MOZ_ASSERT_IF, MOZ_ALWAYS_TRUE, MOZ_ALWAYS_FALSE, and MOZ_NOT_REACHED macros to make performing true assertions dead simple.

MOZ_ASSERT(expr) and MOZ_ASSERT_IF(ifexpr, expr)

MOZ_ASSERT(expr) is straightforward: pass an expression as its sole argument, and in debug builds, if that expression is falsy, the assertion fails and execution halts in a debuggable way.

#include "mozilla/Assertions.h"

void frobnicate(Thing* thing)

MOZ_ASSERT_IF(ifexpr, expr) addresses the case when you want to assert something, where the check to decide whether to assert isn’t otherwise needed. You’d rather not muddy up your code by adding an #ifdef and if statement around your assertion. (MOZ_ASSERT(!ifexpr || expr) is a workaround, but it’s not very readable.) SpiderMonkey’s experience suggests Mozilla code will get good mileage from MOZ_ASSERT_IF.

#include "mozilla/Assertions.h"

class Error
    const char* optionalDescription;

    /* If specified, desc must not be empty. */
    Error(const char* desc = NULL)
      MOZ_ASSERT_IF(desc != NULL, desc[0] != '\0');
      optionalDescription = desc;


Sometimes the expression for an assertion must always be executed for its side effects, and it can’t just be executed in debug builds. MOZ_ALWAYS_TRUE(expr) and MOZ_ALWAYS_FALSE(expr) support this idiom. These macros always evaluate their argument, and in debug builds that argument is asserted truthy or falsy.

#include "mozilla/Assertions.h"

/* JS_ValueToBoolean was fallible but no longer is. */
MOZ_ALWAYS_TRUE(JS_ValueToBoolean(cx, v, &b));


MOZ_NOT_REACHED(reason) indicates that the given point can’t be reached during execution: simply hitting it is a bug. (Think of it as a more-explicit form of asserting false.) It takes as an argument an explanation of why that point shouldn’t have been reachable.

#include "mozilla/Assertions.h"

// ...in a language parser...
void handle(BooleanLiteralNode node)
  if (node.isTrue())
  else if (node.isFalse())
    MOZ_NOT_REACHED("boolean literal that's not true or false?");

Compile-time assertions

Most assertions must happen at runtime. But some assertions are static, depending only on constants, and could be checked during compilation. A compile time check is better than a runtime check: the developer need not ensure a test exercises that code, because the compiler itself enforces the assertion. Properly crafted static assertions can never be unwittingly broken.

MOZ_STATIC_ASSERT(cond, reason)

MOZ_STATIC_ASSERT(cond, reason) asserts a condition at compile time. In newer compilers, if the assertion fails, the compiler will also include reason in diagnostics.

#include "mozilla/Assertions.h"

struct S { ... };
MOZ_STATIC_ASSERT(sizeof(S) % sizeof(size_t) == 0,
                  "S should be a multiple of word size for efficiency");

MOZ_STATIC_ASSERT is implemented with an impressive pile of hacks which should work perfectly everywhere — except, rarely, gcc 4.2 (the current OS X compiler) when compiling C++ code. The failure mode requires MOZ_STATIC_ASSERT on line N not in an extern "C" code block and a second MOZ_STATIC_ASSERT on the same line N (in a different file) in an extern "C" block. And those two files have to be used when compiling a single file, with the extern "C"‘d assertion second. This seems improbable, so we’ll risk it til we drop gcc 4.2 support.

Possible improvements

Assertions.h is reasonably complete, but I have a few ideas I’ve been considering for improvements. Let me know what you think of them in comments.

Add an optional reason argument to MOZ_ASSERT, and maybe to MOZ_ALWAYS_TRUE and MOZ_ALWAYS_FALSE

MOZ_ASSERT takes only the condition to test as an argument. In contrast NS_ASSERTION and NS_ABORT_IF_FALSE take the condition and an explanatory string. MOZ_ASSERT‘s lack of explanation derives purely from its ancestry in the JS_ASSERT macro: it wasn’t deliberate.

Would it be helpful if MOZ_ASSERT, MOZ_ALWAYS_TRUE, and MOZ_ALWAYS_FALSE optionally took a reason? (Optional because some assertions, e.g. many non-null assertions, are self-explanatory.) We’d have to disable assertions for compilers not implementing variadic macros (I think our supported compilers implement them), or possibly lose the condition expression in the assertion failure message. A reason would make it easier to convert existing NS_ABORT_IF_FALSEs to MOZ_ASSERTs. Should we add an optional second argument to MOZ_ASSERT and the others?

Include __assume(0) or __builtin_unreachable() in MOZ_NOT_REACHED

__builtin_unreachable() and __assume(0) inform the compiler that subsequent code can’t be executed, providing optimization opportunities. It’s unclear how this affects debugging feedback like stack traces. If the optimizations destroy Breakpad-ability, that may be too big a loss. More research is needed here.

Another possibility might be to use __builtin_trap(). This may not communicate an optimization opportunity comparable to that provided by the other two options. (It can’t be equally informative because execution must be able to continue past a trap. Thus the two have different impacts on variable lifetimes. Whether __builtin_trap otherwise communicates “unlikelihood” well enough isn’t clear.) Perhaps __builtin_trap could be used in debug builds, and __builtin_unreachable could be used in optimized builds. Again: more research needed.

Use C11’s _Static_assert in MOZ_STATIC_ASSERT

New editions of C and C++ include built-in static assertion syntax. MOZ_STATIC_ASSERT expands to C++11’s static_assert(2 + 2 == 4, "ya rly") syntax when possible. It could be made to expand to C11’s _Static_assert('A' == 'A', "no wai") syntax in some other cases, but frankly I don’t hack enough C code to care as long as the static assertion actually happens. 🙂 This is bug 713531 if you’re interested in investigating.

Want more information?

Read Assertions.h. mfbt code has a high standard for code comments in interface descriptions, and for file names (the current Util.h being a notable exception which will be fixed). We want it to be reasonably obvious where to find what you need and how to use it by skimming mfbt/‘s contents and then skimming a few files’ contents. Good comments are key to that. You should find Assertions.h quite readable; please file a bug if you have improvements to suggest.


For future reference when debugging inside JS modules (where no dump function is available)

Tags: , , , , , , , — Jeff @ 19:59
function dump(msg)
  var mod = {};
  Components.utils.import("resource://gre/modules/ctypes.jsm", mod);
  var ctypes = mod.ctypes;
  var libc = ctypes.open("libc.so.6");
  var puts =
    libc.declare("puts", ctypes.default_abi, ctypes.int, ctypes.char.ptr);
  puts("!!!!!!!!!!!!!!!!!!!\n" +
       "!!! " + msg + "\n" +


Working on the JS engine, redux

In a continuation of a topic started by mrbkap, I present you this gem of a gdb command I needed to use today:

cond 8 \
  (*$9 && \
   ((*$9)->id&7) == 4 && \
   (*(jschar**)((uintptr_t) (*$9)->id + 4))[0] == 'o' && \
   (*(jschar**)((uintptr_t) (*$9)->id + 4))[1] == 'f' && \
   (*(jschar**)((uintptr_t) (*$9)->id + 4))[2] == 'f')

For minimal background, breakpoint 8 was the result of watch *$9, and of course $9 = (JSScopeProperty **) 0x7ffff2f08038.

By the way, did you know the gdb command line supports line continuations? I didn’t, before I had to think about how the above command would display without any. 🙂 This is the above command as I originally wrote it:

cond 8 (*$9 && ((*$9)->id&7) == 4 && (*(jschar**)((uintptr_t) (*$9)->id + 4))[0] == 'o' && (*(jschar**)((uintptr_t) (*$9)->id + 4))[1] == 'f' && (*(jschar**)((uintptr_t) (*$9)->id + 4))[2] == 'f')