Introducing mozilla::Abs to mfbt

Tags: , , , , , , , , , — Jeff @ 08:17

Computing absolute values in C/C++

C includes various functions for computing the absolute value of a signed number. C++98 implementations add the C functions to namespace std, and it adds abs() overloads to namespace std so std::abs works on everything. For a long time Mozilla used NS_ABS to compute absolute value, but recently we switched to std::abs. This works on many systems, but it has a few issues.

Issues with std::abs

std::abs is split across two headers

With some compilers, the integral overloads are in <cstdlib> and the floating point overloads are in <cmath>. This led to confusion when std::abs compiled on one type but not on another, in the same file. (Or worse, when it worked with just one #include because of that developer’s compiler.) The solution was to include both headers even if only one was needed. This is pretty obscure.

std::abs(int64_t) doesn’t work everywhere

On many systems <stdint.h> has typedef long long int64_t;. But long long was only added in C99 and C++11, and some compilers don’t have long long std::abs(long long), so int64_t i = 0; std::abs(i); won’t compile. We “solved” this with compiler-specific #ifdefs around custom std::abs specializations in a somewhat-central header. (That’s three headers to include!) C++ says this has undefined behavior, and indeed it’ll break as we update compilers.

std::abs(int32_t(INT32_MIN)) doesn’t work

The integral abs overloads don’t work on the most-negative value of each signed integer type. On twos-complement machines (nearly everything), the absolute value of the smallest integer of a signed type won’t fit in that type. (For example, INT8_MIN is -128, INT8_MAX is +127, and +128 won’t fit in int8_t.) The integral abs functions take and return signed types. If the smallest integer flows through, behavior is undefined: as absolute-value is usually implemented, the value is returned unchanged. This has caused Mozilla bugs.

Mozilla code should use mozilla::Abs, not std::abs

Unfortunately the only solution is to implement our own absolute-value function. mozilla::Abs in "mozilla/MathAlgorithms.h" is overloaded for all signed integral types and the floating point types, and the integral overloads return the unsigned type. Thus you should use mozilla::Abs to compute absolute values. Be careful about signedness: don’t assign directly into a signed type! That loses mozilla::Abs‘s ability to accept all inputs and will cause bugs. Ideally this would be a compiler warning, but we don’t use -Wconversion or Microsoft equivalents and so can’t do better.